• <pre id="0thyn"></pre><pre id="0thyn"><label id="0thyn"></label></pre><p id="0thyn"></p>
  • <p id="0thyn"><strong id="0thyn"></strong></p>
      當前位置:文檔之家? 2014年高考文科數學真題解析分類匯編:K單元 概率(純word可編輯)

      2014年高考文科數學真題解析分類匯編:K單元 概率(純word可編輯)

             

                  

          

      K

      單元

        

      概率

                                                     

      K1 

      隨事件的概率

      13

      [2014·

      新課標全國卷Ⅱ

      ] 

      甲、乙兩名運動員各自等可能地從紅、白、藍

      3

      種顏色的

      運動服中選擇

      1

      種,則他們選擇相同顏色運動服的概率為

      ________

      13.

      1

      3

      [

      解析

      ] 

      甲有

      3

      種選法,乙也有

      3

      種選法,所以他們共有

      9

      種不同的選法.若他

      們選擇同一種顏色,則有

      3

      種選法,所以其對應的概率

      P

      3

      9

      1

      3

      . 

      13

      [2014·

      全國新課標卷Ⅰ

      ] 

      2

      本不同的數學書和

      1

      本語文書在書架上隨機排成一行,

      2

      本數學書相鄰的概率為

      ________

      13.

      2

      3

      [

      解析

      ] 2

      本數學書記為數

      1

      ,數

      2

      ,

      3

      本書共有

      (

      1

      2

      )

      ,

      (

      1

      語數

      2)

      ,

      (

      2

      1

      )

      ,

      (

      2

      語數

      1)

      ,

      (

      語數

      1

      2)

      ,

      (

      語數

      2

      1)6

      種不同的排法,其中

      2

      本數學書相鄰

      的排法有

      4

      種,對應的概率為

      P

      4

      6

      2

      3

      . 

      14

      [2014·

      浙江卷

      ] 

      3

      張獎券中有一、二等獎各

      1

      張,另

      1

      張無獎.甲、乙兩人各抽

      1

      張,兩人都中獎的概率是

      ________

      14.

      1

      3

      [

      解析

      ] 

      基本事件的總數為

      3

      ×

      2

      6

      ,甲、乙兩人各抽取一張獎券,兩人都中獎只

      2

      種情況,所以兩人都中獎的概率

      P

      2

      6

      1

      3

      . 

      19

      [2014·

      陜西卷

      ] 

      某保險公司利用簡單隨機抽樣方法,對投保車輛進行抽樣,樣本車

      輛中每輛車的賠付結果統計如下:

      賠付金額

      (

      )

      0

      1000

      2000

      3000

      4000 

      車輛數

      (

      )

      500

      130

      100

      150

      120 

      (1)

      若每輛車的投保金額均為

      2800

      元,估計賠付金額大于投保金額的概率;

      (2)

      在樣本車輛中,車主是新司機的占

      10%

      ,在賠付金額為

      4000

      元的樣本車輛中,車主

      是新司機的占

      20%

      ,估計在已投保車輛中,新司機獲賠金額為

      4000

      元的概率.

      19

      解:

      (1)

      A

      表示事件“賠付金額為

      3000

      元”,

      B

      表示事件“賠付金額為

      4000

      元”,

      以頻率估計概率得

      P

      (

      A

      )

      150

      1000

      0.15

      ,

      P

      (

      B

      )

      120

      1000

      0.12. 

      由于投保金額為

      2800

      元,所以賠付金額大于投保金額的概率為

      P

      (

      A

      )

      P

      (

      B

      )

      0.15

      0.12

      0.27. 

      (2)

      C

      表示事件“投保車輛中新司機獲賠

      4000

      元”,

      由已知,

      得樣本車輛中車主為新

      司機的有

      0.1

      ×

      1000

      100(

      )

      ,

      而賠付金額為

      4000

      元的車輛中,

      車主為新司機的有

      0.2

      ×

      120

      24(

      )

      ,所以樣本車輛中新司機車主獲賠金額為

      4000

      元的頻率為

      24

      100

      0.24.

      由頻率估計概

      率得

      P

      (

      C

      )

      0.24. 

      16

      、

      [2014·

      四川卷

      ] 

      一個盒子里裝有三張卡片,分別標記有數字

      1

      ,

      2

      ,

      3

      ,這三張卡片

      除標記的數字外完全相同.

      隨機有放回地抽取

      3

      次,

      每次抽取

      1

      張,

      將抽取的卡片上的數字

      依次記為

      a

      ,

      b

      ,

      c

      . 

      (1)

      求“抽取的卡片上的數字滿足

      a

      b

      c

      ”的概率;

      (2)

      求“抽取的卡片上的數字

      a

      ,

      b

      ,

      c

      不完全相同”的概率.

      16

      解:

      (1)

      由題意,

      (

      a

      ,

      b

      ,

      c

      )

      所有的可能為:

      (1

      ,

      1

      ,

      1)

      ,

      (1

      ,

      1

      ,

      2)

      ,

      (1

      ,

      1

      ,

      3)

      ,

      (1

      ,

      2

      ,

      1)

      ,

      (1

      ,

      2

      ,

      2)

      ,

      (1

      ,

      2

      ,

      3)

      ,

      (1

      ,

      3

      ,

      1)

      ,

      (1

      ,

      3

      ,

      2)

      ,

      (1

      ,

      3

      ,

      3)

      ,

      (2

      ,

      1

      ,

      1)

      ,

      (2

      ,

      1

      ,

      2)

      ,

      (2

      ,

      1

      ,

      3)

      ,

      (2

      ,

      2

      ,

      1)

      ,

      (2

      ,

      2

      ,

      2)

      ,

      (2

      ,

      2

      ,

      3)

      ,

      (2

      ,

      3

      ,

      1)

      ,

      (2

      ,

      3

      ,

      2)

      ,

      (2

      ,

      3

      ,

      3)

      ,

      (3

      ,

      1

      ,

      1)

      ,

      (3

      ,

      1

      ,

      2)

      ,

      (3

      ,

      1

      ,

      3)

      ,

      (3

      ,

      2

      ,

      1)

      ,

      (3

      ,

      2

      ,

      2)

      ,

      (3

      ,

      2

      ,

      3)

      ,

      (3

      ,

      3

      ,

      1)

      ,

      (3

      ,

      3

      ,

      2)

      ,

      (3

      ,

      3

      ,

      3)

      ,共

      27

      種.

      設“抽取的卡片上的數字滿足

      a

      b

      c

      ”為事件

      A

      ,

      則事件

      A

      包括

      (1

      ,

      1

      ,

      2)

      ,

      (1

      ,

      2

      ,

      3)

      ,

      (2

      ,

      1

      ,

      3)

      ,共

      3

      種,

      所以

      P

      (

      A

      )

      3

      27

      1

      9

      . 

      因此,“抽取的卡片上的數字滿足

      a

      b

      c

      ”的概率為

      1

      9

      . 

      (2)

      設“抽取的卡片上的數字

      a

      ,

      b

      ,

      c

      不完全相同”為事件

      B

      ,

      則事件

      B

      包括

      (1

      ,

      1

      ,

      1)

      ,

      (2

      ,

      2

      ,

      2)

      ,

      (3

      ,

      3

      ,

      3)

      ,共

      3

      種.

      所以

      P

      (

      B

      )

      1

      P

      (

      B

      )

      1

      3

      27

      8

      9

      . 

      因此,“抽取的卡片上的數字

      a

      ,

      b

      ,

      c

      不完全相同”的概率為

      8

      9

      . 

      K2 

      古典概型

      20

      ,

      [2014·

      福建卷

      ] 

      根據世行

      2013

      年新標準,

      人均

      GDP

      低于

      1035

      美元為低收入國家;

      人均

      GDP

      1035

      4085

      美元為中等偏下收入國家;

      人均

      GDP

      4085

      12 616

      美元為中等

      偏上收入國家;人均

      GDP

      不低于

      12 616

      美元為高收入國家.某城市有

      5

      個行政區,各區人

      口占該城市人口比例及人均

      GDP

      如下表:

      行政區

      區人口占城市人口比例

      區人均

      GDP(

      單位:美元

      ) 

      A

      25%

      8000 

      B

      30%

      4000 

      C

      15%

      6000 

      D

      10%

      3000 

      E

      20%

      10 000 

      (1)

      判斷該城市人均

      GDP

      是否達到中等偏上收入國家標準;

      (2)

      現從該城市

      5

      個行政區中隨機抽取

      2

      個,求抽到的

      2

      個行政區人均

      GDP

      都達到中等

      偏上收入國家標準的概率.

      20

      解:

      (1)

      設該城市人口總數為

      a

      ,則該城市人均

      GDP

      8000

      ×

      0.25

      a

      4000

      ×

      0.30

      a

      6000

      ×

      0.15

      a

      3000

      ×

      0.10

      a

      10 000

      ×

      0.20

      a

      a

      6400(

      美元

      )

      因為

      6400

      [4085

      ,

      12 616)

      ,

      所以該城市人均

      GDP

      達到了中等偏上收入國家標準.

      (2)

      “從

      5

      個行政區中隨機抽取

      2

      個”的所有的基本事件是:

      {A

      ,

      B}

      ,

      {A

      ,

      C}

      ,

      {A

      ,

      D}

      ,

      {A

      ,

      E}

      ,

      {B

      ,

      C}

      ,

      {B

      ,

      D}

      ,

      {B

      ,

      E}

      ,

      {C

      ,

      D}

      ,

      {C

      ,

      E}

      ,

      {D

      ,

      E}

      ,共

      10

      個.

      相關文檔
      • 高考文科數學真題匯編

      • 高考文科數學真題匯編

      • 高考文科數學分類匯編

      • 高考文科數學分類匯編

      • 2014高考數學分類匯編

      相關文檔推薦:
      在线观看无码av免费不卡网站_中国人在线观看高清免费观看_超级欧美三级欧美一级_欧美老熟妇aⅴ网
    1. <pre id="0thyn"></pre><pre id="0thyn"><label id="0thyn"></label></pre><p id="0thyn"></p>
    2. <p id="0thyn"><strong id="0thyn"></strong></p>